

Welcome to ECOOP 2009 in Genova!

ECOOP 2009’s Organizing Committee is pleased to welcome you to Genova, for the
23rd European Conference on Object-Oriented Programming. Since it was first held,
in Paris in 1987, ECOOP has traveled across Europe and is now returning to Italy
for the second time after previously being held in Bologna (1994). This year’s edition
continues the tradition of being a premier international forum to discuss and advance
a broad range of topics woven together by the common thread of object technology.
It offers a well-integrated collage of events, including outstanding invited speakers,
carefully refereed technical papers, topic-focused workshops and a summer school
offering selected tutorials. The conference venue is Palazzo Ducale, the Doge histori-
cal residence, in the heart of Genova. In such a remarkable context, we trust you will
find the program interesting and enjoyable.

The main reason for ECOOP’s ongoing success is its excellent technical pro-
gram, put together each year from a large number of high-quality submissions. This
year’s Program Chair is Sophia Drossopoulou, with whom it has been a great plea-
sure to cooperate. We are delighted to announce three outstanding keynote talks.
The conference keynotes will be given by Simon Peyton Jones and Cliff Click. The
last keynote talk will be given by David Ungar, the 2009 winner of the AITO Dahl-
Nygaard Award. We wish to thank all those who are organizing workshops, giving
tutorials, presenting demonstrations, offering posters and running the impromptu
birds-of-a-feather sessions for their significant efforts, all of which contribute to the
richness of the ECOOP tapestry. ECOOP 2009 is being organized by the Department
of Computer and Information Sciences of the University of Genova in cooperation
with the Department of Informatics and Communication of the University of Mi-
lano. It is being held under the aegis of AITO, the Association Internationale pour
les Technologies Objets, in cooperation with ACM, SIGPLAN, and SIGSOFT. The
conference would not have been possible without the financial support of numerous
sponsors. Special thanks go to ERCIM, IBM Research, Google, Microsoft Research,
and Yahoo! Research.

Welcome to Genova and enjoy ECOOP 2009!

Giovanna Guerrini and Elena Zucca
on behalf of the Organizing Committee

Copyright and all rights therein are maintained by the authors or by other copyright holders.
Cover by Daniela Peghini, Graphic Design by Walter Cazzola

Contents

Program Overview . 2

AITO Dahl-Nygaard Prize . 5

Workshops . 7

Summer School . 9

Technical Papers . 16

Posters & Demos . 28

General Information . 30

Social Events . 31

Conference Site Information . 32

Genova . 34

Organizing Committees . 36

Student Volunteers . 36

Program Committee . 37

1

ECOOP’09 Conference at Glance

Monday, July 6th

Workshops Summer School

8:00-9:00 Registration

9:00-10:30 W1, W2, W3, W4, W5

10:30-11:00 Coffee Break

11:00-12:30 W1, W2, W3, W4, W5

12:30-14:00 Lunch

14:00-15:30 W1, W2, W3, W4, W5

15:30-16:00 Coffee Break

16:00-17:30 W1, W2, W3, W4, W5

Tuesday, July 7th

Workshops Summer School

8:00-9:00 Registration

9:00-10:30 W6, W7, W8, W9, W10, W11, W12

10:30-11:00 Coffee Break

11:00-12:30 W6, W7, W8, W9, W10, W11, W12

12:30-14:00 Lunch

14:00-15:30 W6, W7, W9, W10, W11, W12 PyPy

15:30-16:00 Coffee Break

16:00-17:30 W6, W7, W9, W10, W11, W12

2

Wednesday, July 8th

Technical Papers Summer School

8:00-9:00 Registration

9:00-9:30 Welcome

9:30-10:30 Keynote: Simon Peyton-Jones

10:30-11:00 Coffee Break

11:00-12:30 Types, Frameworks and Modelling Project Fortress

12:30-14:00 Lunch

14:00-15:30 Aliasing and Transactions VeriFast

15:30-16:00 Coffee Break

16:00-17:30 Access Control and Verification Flexible Task Graphs

17:30-18:30 Poster & Demo Session

Thursday, July 9th

Technical Papers Summer School

9:00-9:30 Awarding of Dahl-Nygaard Prize

9:30-10:30 Talk of Dahl-Nygaard laureate David Ungar

10:30-11:00 Coffee Break

11:00-12:30 Modularity Crystal-izing

12:30-14:00 Lunch

14:00-15:30 Mining and Extracting Spec#

15:30-16:00 Coffee Break

16:00-17:30 Refactoring Object Teams

17:30-18:30 Poster & Demo Session

3

Friday, July 10th

Technical Papers Summer School

9:00-10:00 Keynote: Cliff Click

10:30-11:00 Coffee Break

11:00-12:30 Concurrency, Exceptions and Initialization

12:30-14:00 Lunch

14:00-15:30 Concurrency and Distribution

15:30-16:00 Closing

4

AITO Dahl-Nygaard Prize

Thursday, July 9th, 9:00-9:30

ECOOP 2009 is delighted to host the fifth AITO Dahl-Nygaard Prize Awards.
The AITO Ole-Johan Dahl and Kristen Nygaard prize is awarded annually to

two individuals that have made significant technical contributions to the field of
Object-Orientation. The work should be in the spirit of the pioneer conceptual and/or
implementation work of Dahl and Nygaard which shaped our present view of pro-
gramming and modeling, now known as Object-Orientation. The prize is presented
each year at the ECOOP conference. The prize consists of two awards given to a
senior and to a junior professional; while the prizes are usually awarded annually,
there may be exceptional occasions when one or both are left unawarded. The se-
nior professional should have made a significant long-term contribution to the field
in research or engineering. The junior professional should have made a promising
contribution to the field through a paper, a thesis or a prototype implementation. A
Prize Committee of three persons nominated annually by the AITO General Assem-
bly recommends the award winners to the AITO executive committee. Every year
AITO will solicit proposals until September 30th. Such notice shall be placed on the
AITO/ECOOP websites and also emailed to the ECOOP mailing list and other or-
ganizations such as OOPSLA and AOSD as appropriate. The Prize Committee will
propose two names to the AITO executive committee, not later than December 31st

of that year. Proposals may be submitted by anyone in the community using by
sending an email to dahl-nygaard@aito.org. The decision of the committee will be
made public and official before the end of January and published on the AITO web
site. The prizes will be officially presented at the ECOOP conference of the following
year. The winners may be asked to give a talk on this occasion. Both recipients will
be invited by AITO to ECOOP (travel expenses and conference registration will be
paid by AITO). In addition to the presentation of the prize, the junior winner will
receive a cash award roughly corresponding to the prize of a portable computer (ap-
proximately 2000 Euro in the year 2004).

AITO is very proud to announce the winner of the 2009 Dahl-Nygaard Prize:
David Ungar (IBM Research) for his contribution to the creation of the Self program-
ming language. David Ungar will be the keynote speakers on Thursday morning.

Thursday, July 9th, 9:30-10:30

Self and Self: Whys and Wherefores
David Ungar (IBM Research, USA)

Abstract. Generational garbage collection, prototype-based languages, dynamic op-
timization, cartoon animation for legibility, all tremendous fun, none done alone.
What were they? How did they happen? Why did they matter? Looking back, what

5

dahl-nygaard@aito.org

is worth learning about these experiences beyond the technical innovations? Com-
bining hindsight with others’ wisdom, it is possible to abstract some thoughts that
may be useful in other situations: when (not) to listen to wise council; whom to fol-
low into the cafeteria at lunch time; the benefit of striking a balance between one’s
own vision and those of ones collaborators; which chance events might alter one’s
course; and how one’s best work can sometimes arise from things that, on the surface,
have nothing to do with work at all. At a deeper level still, the notion that values,
principles, and practices arise in that particular order serves to unify the work and
the experiences, and perhaps points the way forward as we all strive to invent the
future.
Speaker’s Bio. David Ungar has long been fascinated by programming paradigms
that can change the way people think, novel implementation techniques that make
new languages feasible, and user interfaces that vanish. With Dr. Randall B. Smith
at PARC, he designed a simple yet powerful prototype-based object-oriented pro-
gramming language called “Self.” As an Assistant Professor at Stanford, David and
his students developed new compilation techniques and heap structures for pure
object-oriented programming languages. Rejoining Dr. Smith at Sun Microsystems
Laboratories, David co-led a project to create a complete programming environment
for Self. The implementation techniques developed for Self have been harnessed
for Sun’s HotSpot Java’s Virtual Machine. David’s Klein project explored metacircu-
larity in pursuit of simpler, more malleable high-performance virtual machines and
better development environments for them.

David’s doctoral research was performed at the University of California at Berke-
ley with David Patterson, and concerned the development of a RISC for Smalltalk.
The dissertation was published by the MIT press as an ACM Distinguished Disserta-
tion. It introduced a fast automatic storage reclamation algorithm, Generation Scav-
enging, which has since influenced many production systems, and isolated those
architectural features that significantly improved performance.

David Ungar is an ACM Distinguished Engineer, and three of his papers have
been recognized as having been among the most influential in their respective fields:
one on the Self language, one on the application of cartoon animation techniques to
user interfaces, and one on generational garbage collection.

Since 2007, David has been privileged to be part of IBM Research, where he has
added a facility for collaboration to a performance-analysis system (Tuning Fork),
and where, in collaboration with Sam Adams, he investigates new programming
paradigms for manycore architectures.

Previous AITO Dahl-Nygaard Prizes
Senior Prize Junior Prize

2005 (Glasgow) Bertrand Meyer Gail Murphy
2006 (Nantes) E. Gamma, R. Helm, R. Johnson, and J. Vlissides
2007 (Berlin) Luca Cardelli Jonathan Aldrich
2008 (Paphos) Akinori Yonezawa Wolfgang De Meuter

6

Workshops at Bristol Palace

Monday, July 6th, 9:00-12:30, 14:00-17:30

W1 ELW — European Lisp Workshop (Sala Colombo)
Didier Verna (EPITA, Paris, France), Charlotte Herzeel (Vrije Universiteit, Brussel,
Belgium), Robert Strandh (LaBRI, University of Bordeaux I, France), Christophe
Rhodes (University of London, UK) and Hans Hübner (Software Developer, Berlin,
Germany).

W2 ICOOOLPS — Implementation, Compilation, Optimization of Object-Ori-
ented Languages, Programs and Systems (Sala Michelangelo)
Ian Rogers (University of Manchester, UK) and Olivier Zendra (INRIA, France).

W3 STOP — Script to Program Evolution (Sala Marconi)
Nate Nystrom (IBM T.J. Watson Research Center, USA), Jan Vitek (Purdue Univer-
sity, USA) and Tobias Wrigstad (Purdue University, USA).

W4 FTfJP — Formal Techniques for Java-like Programs (Sala Leonardo)
Anindya Banerjee (IMDEA Software, Spain), Sophia Drossopoulou (Imperial Col-
lege, UK), Susan Eisenbach (Imperial College, UK), Gary T. Leavens (University
of Central Florida, USA), Peter Ml̈ler (ETH Zr̈ich, Switzerland), Arnd Poetzsch-
Heffter (University of Kaiserslautern, Germany) and Erik Poll (Radboud University
Nijmegen, Netherlands).

W5 Doctoral Symposium (Sala Bellini)
Stephen Nelson (Victoria University of Wellington, New Zealand).

Tuesday, July 7th, 9:00-12:30, 14:00-17:30

W6 COP — Context-Oriented Programming (Sala Michelangelo)
Pascal Costanza (Vrije Universiteit Brussel, Belgium), Richard P. Gabriel (IBM Re-
search, USA), Robert Hirschfeld (Hasso-Plattner-Institut, Germany) and Jorge Valle-
jos (Vrije Universiteit Brussel, Belgium).

W7 DO21 — Distributed Objects for the Twenty-First Century (Sala Leonardo)
Tom Van Cutsem (Vrije Universiteit Brussel, Belgium), Jorge Fox (Trinity College
Dublin, Ireland), Ole Lehrmann Madsen (Aarhus University and Alexandra Insti-
tute, Denmark), Eric Jul (University of Copenhagen, Denmark) and Gilad Bracha
(Ministry of Truth, USA).

W8 XOODB — The marriage of XML and Object-Oriented Database Technolo-
gies and their Future (Sala Bellini) Morning Only
Dario Colazzo (University of Paris Sud, France), Marco Mesiti (DICo, Università di
Milano, Italy), Carlo Sartiani (University of Basilicata, Italy) and Emmanuel Waller
(University of Paris Sud, France).

7

W9 POOSC — Parallel/High-Performance Object-Oriented Scientific Comput-
ing (Sala Colombo)
Wolfgang Bangerth (Texas A&M University, USA), Kei Davis (Los Alamos National
Laboratory, USA), Peter Gottschling (Technische Universität Dresden, Germany),
René Heinzl (Technische Universität Wien, Austria), Bernd Mohr (Juelich Super-
computing Centre, Germany), Jörg Nolte (Brandenburg University of Technology,
Germany), Laurent Plagne (EDF, France), and Jörg Striegnitz (University Of Ap-
plied Sciences, Germany).

W10 RAOOL — Relationships and Associations in Object-Oriented Languages
(Sala Paganini B)
Stephanie Balzer (ETH Zürich, Switzerland), Gavin Bierman (Microsoft Research,
UK), Stephen Nelson (Victoria University of Wellington, New Zealand) and Frank
Tip (IBM T.J. Watson Research Center, USA).

W11 IWACO — International Workshop on Aliasing, Confinement and Owner-
ship in Object-Oriented Programming (Sala Mazzini)
Dave Clarke (K.U. Leuven, Belgium), Sophia Drossopoulou (Imperial College, UK),
James Noble (Victoria University of Wellington, New Zealand) and Tobias Wrigstad
(Purdue University, USA).

W12 RAM-SE — Reflection, AOP and Meta-Data for Software Evolution (Sala
Marconi)
Walter Cazzola (DICo, Università di Milano, Italy), Shigeru Chiba (Tokyo Institute
of Technology, Japan), Manuel Oriol (University of York, UK) and Gunter Saake
(Otto-von-Guericke-Universität Magdeburg, Germany).

8

ECOOP 2009 Summer School

ECOOP 2009 offers 7 Summer School sessions. The first session is on Tuesday, in
parallel with workshops, whereas all other sessions are on Wednesday and Thursday,
in parallel with the technical paper sessions of the main conference. Attendance at
the Summer School sessions is included with registration to the main conference;
attendance at the first session is also inlcuded with registration to workshops only.
The Summer School sessions will be offered on a first-come, first-served basis: if
you wish to attend a particular session, make sure you are registered, and get to the
Summer School room early!

Tuesday, July 7th (14:00-15:30, Bristol, Sala Bellini)

Writing Interpreters for Dynamic Languages Using PyPy (and Getting Them Fast)
Antonio Cuni (Università di Genova, Italy),
Carl Friedrich Bolz and Armin Rigo (Heinrich-Heine-Universität Düsseldorf, Germany)

Abstract. We propose to give a tutorial on how to use the PyPy project to write
interpreters for dynamic languages. PyPy supports compiling such interpreters to
various target environments (like .NET or C/Posix) and automatically generating a
Just-In-Time compiler for them. PyPy is thus an emerging tool to help implement
fast, portable multi-platform interpreters with less effort.

Antonio Cuni is a Phd student at the University of Genova, Italy. His main area of
interests is about the implementation of dynamic languages, particularly on top of
virtual machines like .NET or the JVM. He has been one of the core developers of
PyPy since 2006, working in particular on the backends for CLI and JVM and on the
JIT compiler generator.

Carl Friedrich Bolz is a PhD student at the University of Düsseldorf, Germany. He
is mostly interested in the efficient implementation of dynamic programming lan-
guages. In 2005 he started to contribute to the PyPy project and subsequently be-
came one of the core developers. He has been involved in nearly all areas of PyPy
development, from garbage collectors to stackless implementation. Additionally he
is very interested in partial evaluation, particularly at runtime.

Armin Rigo was born in 1976 in Lausanne, Switzerland. He is a researcher at the
Heinrich-Heine Universität Düsseldorf, previously at the University of Southamp-
ton. He obtained his Ph.D. in Logic and Set Theory at the Free University of Brussels.
He is the main author of several commercial, open source and research programs. He
developed with the Psyco project novel techniques for efficient interpretation of dy-
namic programming languages. From there on, he was involved in the core of PyPy
with the same goal of making efficient interpreters, but writing them in a high-level
and straightforward style.

9

Wednesday, July 8th (11:00-12:30, Palazzo Ducale, Sala «Camino»)

Project Fortress: A Multicore Language for Scientists and Engineers
Sukyoung Ryu and Jan-Willem Maessen (Sun Microsystems, USA)

Abstract. The computing world is currently undergoing dramatic changes. More
powerful computers have brought high-performance computing (HPC), an endeavor
historically relegated to national labs and government institutions, to the mainstream.
At the same time, microchip manufacturers are designing new chips that contain
increasing numbers of cores on a single chip to improve performance. Yet unfor-
tunately, modern programming languages are ill-equipped for these changes. Most
languages do not directly support any notion of parallelism and even languages with
support for parallelism, such as the JavaTM Programming Language, support only
course-grained notions of parallelism, best suited for tasks such as networking and
GUI programming. Fortress is a new programming language designed for HPC with
high programmability. It provides mathematical syntax to enable scientists and engi-
neers to write programs in a notation they are accustomed to. It also provides built-
in support for parallel programming. Fortress is designed for growth by community
participation and development and its syntax and semantics have been formally de-
signed and specified. The tutorial introduces Project Fortress, an open-source project
with a reference implementation of the Fortress programming language. Anyone
who works on scientific programming, parallel programming, quality-critical soft-
ware development, or open-source projects will find this tutorial of interest.

Sukyoung Ryu is a Member of Technical Staff in Sun Microsystems Laboratories,
where she works on formally designing and developing the Fortress programming
language. Before that, she was a Research Associate in Computer Science at Har-
vard, where she worked on the Debugging Everywhere project. She received her
Ph.D. (2001), M.S. (1996), and B.S. (1995) in Computer Science from Korea Advanced
Institute of Science and Technology. Her most recent research focuses on develop-
ing language features that are both useful in practice and proven to be sound. She is
leading the effort to construct the core calculi of the Fortress language, to improve the
Fortress prose specification, and to build a full-fledged static front-end for Fortress
that runs entirely on the JVM.

Jan-Willem Maessen has been part of Project Fortress since its inception in 2002, and
is presently the primary maintainer of the libraries for the Fortress programming lan-
guage. He has been heavily involved in the design of the Fortress language and in
its implementation, and drafted the original specifications of the parallel portions
of the language. His many interests include language design, memory consistency
models, concurrent algorithms, compilation, semantics, and architecture. Prior to
joining Sun, Jan developed Eager Haskell, a Haskell implementation that executes
programs using resource-bounded eager evaluation rather than lazy evaluation. He
also contributed heavily to the compiler and libraries for pH, an implicitly-parallel
programming language.

10

Wednesday, July 8th (14:00-15:30, Palazzo Ducale, Sala «Camino»)

VeriFast: A Simple, Sound Verifier for Rich Separation Logic Contracts
Bart Jacobs and Jan Smans (Katholieke Universiteit Leuven, Belgium)

Abstract. VeriFast is a program verification tool for single-threaded and multi-thread-
ed C and Java programs that we are developing. Successful verification guarantees
absence of hard to catch programming errors such as data races and memory leaks,
as well as compliance with rich preconditions and postconditions specified by the
programmer in source code annotations in a form of separation logic. To enable rich
specifications, the programmer may define inductive datatypes, primitive recursive
pure functions over these datatypes, and abstract separation logic predicates. To
enable verification of these rich specifications, the programmer may write lemma
routines, i.e., routines that serve only as proofs that their precondition implies their
postcondition. The verifier checks that lemma routines terminate and do not have
side-effects. The tool takes an annotated program as input and reports success or
failure without further interaction. The tool verifies each function/method sepa-
rately, by symbolic execution, where values are represented as terms of first-order
logic with a set of equality and inequality constraints, and memory is represented as
a separate conjunction of concrete and abstract elements. Since neither VeriFast itself
nor the underlying SMT solver need to do any significant search, verification time
is predictable and low. We have written and verified various example programs, in-
cluding data-race-freedom of a small multi-threaded chat server, and full functional
correctness of a linked list implementation with iterators, a binary tree implementa-
tion, and an implementation of the Composite pattern. We have developed an IDE
that allows the user to step through a failed symbolic execution path, inspecting the
symbolic values of locals and the symbolic heap at each point.

Bart Jacobs is a post-doctoral researcher and Jan Smans is a final-year PhD stu-
dent at the DistriNet research group of the Department of Computer Science at the
Katholieke Universiteit Leuven, Belgium. Both presenters have extensive experience
in program verification and contributed to various verification research projects, in-
cluding Spec#, Chalice, and VCC at Microsoft Research. Bart Jacobs presented a
tutorial on Spec# at FM 2005.

Wednesday, July 8th (16:00-17:30, Palazzo Ducale, Sala «Camino»)

Flexible Task Graphs: A Framework for Experimental Real Time Programming in
Java
Joshua Auerbach (IBM Research, USA)

Abstract. This ECOOP 2009 tutorial will show how to use the newly available
open-source Flexible Task Graphs (Flexotask) framework to develop real-time Java
applications and as a test-bed for new ideas in real-time scheduling, and model-
driven real-time programming. Participants interested in real-time will gain a tool

11

that will be immediately useful in their own research. Participants who are merely
curious about the emerging real-time support in Java will get a survey of the field
(the Real Time Specification For Java, real-time garbage collection) followed by an
in-depth look at "restricted thread programming models" for Java (Eventrons, Re-
flexes, Exotasks, StreamFlex, and especially Flexotask, which was designed to unify
and subsume the others). The tutorial will be presented by Joshua Auerbach who
will take overall responsibility. If available, one or more of Jan Vitek, Jesper Honig
Spring, and/or David Bacon may assist.

Joshua Auerbach has been a Research Staff Member at the IBM Watson Research
Center since 1983, contributing in the areas of protocol conversion, distributed com-
puting, virtualization, and programming languages. Since 2005 he has worked on
Real Time Java, contributing to IBM’s WebSphere Real Time product and the exper-
imental Eventron, Exotask, and Flexotask models. He holds a Ph.D from Yale Uni-
versity.

Thursday, July 9th (11:00-12:30, Palazzo Ducale, Sala «Camino»)

Crystal-izing Sophisticated Code Analyses
Ciera Jaspan, Kevin Bierhoff, and Jonathan Aldrich (Carnegie Mellon University)

Abstract. In recent years we have seen many researchers and practitioners build
tools which statically analyze object-oriented programs. These code analyses have
become incredibly sophisticated: they are often based on complex algorithms and
type systems, require a dataflow analysis, use annotations, summaries, or other mech-
anisms to achieve precision in reasoning about method calls, and take advantage of
conditional tests in the program or are even path-sensitive. These techniques typi-
cally interact with the language being analyzed in nontrivial ways. This makes it al-
most impossible to turn analyses into tools for widely used programming languages
without support from an Integrated Development Environment (IDE) such as Eclipse
or a code analysis frameworks like FindBugs. But the effort for the analysis writer
is still high: IDEs facilitate interaction with the developer of the program being an-
alyzed, but they provide no support for performing sophisticated analyses. On the
other hand, code analysis frameworks typically do provide support for performing
dataflow analyses, but interacting with the programmer becomes difficult. Addition-
ally, the intricacies of dealing with a real language are generally left to the analysis
writer, and popular techniques such as taking advantage of conditionals are not facil-
itated by many analysis frameworks. This tutorial presents our experience in writing
static code analyses for Java using the Crystal analysis framework, which we devel-
oped and refined over the last four years. Crystal is itself a plugin to the Eclipse IDE
and builds on Eclipse’s well-tested AST. Thus its code base is relatively small and
allows analysis writers to leverage the Eclipse platform where needed. Originally
developed for teaching dataflow analysis techniques in a classroom setting, Crystal
is built for simplicity. The interfaces are based upon the theoretical principles of static

12

analysis and make it simple to transition from theory to prototype. In our experience,
the framework allows rapid development of even sophisticated static analyses.

Ciera Jaspan is a graduate student in the Software Engineering Ph.D. program at
Carnegie Mellon University. Her research interests include software frameworks,
program analysis, cost-effective development tools, and software engineering edu-
cation. She received the 2008 John Vlissides award for her continuing thesis work on
a static analysis to detect misuse of software frameworks. Jaspan earned a bachelor’s
degree in software engineering from Cal Poly, San Luis Obispo.

Kevin Bierhoff recently graduated from Carnegie Mellon University with a Ph.D. in
software engineering. His research contributions center around practical formaliza-
tion and enforcement of API protocols in the context of object-oriented programming
languages. Kevin co-developed the Crystal static analysis framework and used it for
both teaching and his own research.

Jonathan Aldrich is an Associate Professor in the School of Computer Science at
Carnegie Mellon University. Aldrich’s research contributions include techniques for
verifying object and component interaction protocols, modular reasoning techniques
for aspects and stateful programs, and new object-oriented language models. For
his work on verifying software architectures, Aldrich received a 2006 NSF CAREER
award and the 2007 Dahl-Nygaard Junior Prize, given annually for a significant tech-
nical contribution to object-oriented programming. His graduate course in program
analysis was the original motivation for creating the Crystal analysis framework.
Aldrich earned a bachelor’s degree in computer science from Caltech and a doctor-
ate in computer science from the University of Washington.

Thursday, July 9th (14:00-15:30, Palazzo Ducale, Sala «Camino»)

Program verification using the Spec# Programming System
K. Rustan M. Leino (Microsoft Research, USA) and Rosemary Monahan (National Univer-
sity of Ireland, Ireland)

Abstract. The Spec# Programming System consists of the Spec# programming lan-
guage which is an extension of C#, the Spec# compiler which is integrated into the
Microsoft Visual Studio development environment and the Spec# static program ver-
ifier which translates Spec# programs into logical verification conditions. The result
is an automatic verification environment which establishes the correctness of a pro-
gram before allowing it to be executed. In addition to the run-time checking tra-
ditionally found in the design by contract approach, Spec# offers the possibility to
verify contracts statically. The goal of this analysis is to help programmers to detect
errors more quickly than they might be found by traditional methods, hence pro-
viding an opportunity to correct the errors when they are still relatively cheap to
fix. A unique feature of the Spec# Programming System is its guarantee of maintain-
ing invariants in object-oriented programs in the presence of callbacks, threads and

13

interobject relationships. In addition, the Spec# Programming System has been ex-
tended so that programs that involve the mathematical domains that are so familiar
to textbook examples (such as sum, count, product, min, and max) may be verified.
In this tutorial, we give an overview of the Spec# Programming System. We focus on
writing programs and their specifications, so that users develop experience in verify-
ing C# programs. Maintaining object invariants in the presence of callbacks, threads,
and inter-object relationships will be presented with examples, exploring the more
difficult aspects of program verification in an object-oriented environment.

K. Rustan M. Leino is a Principal Researcher at Microsoft Research, where his re-
search centres on programming tools. As part of the Research in Software Engineer-
ing (RiSE) group, he leads the Spec# project, focusing on the design and implemen-
tation of the Spec# programming language and its static program verifier.

Rosemary Monahan is Lecturer at the National University of Ireland, Maynooth
(NUIM), where she lectures on topics such as program verification, program lan-
guage semantics and computer programming. Rosemary’s research, as part of the
Principles of Programming (PoP) group, is concerned with the static and dynamic
analysis of object-oriented programs.

In recent collaborations, Rosemary and Rustan have extended the Spec# pro-
gramming system to support typical classroom exercises. At ECOOP 2009, Rosemary
will present these and other features, demonstrating how to use the Spec# Program-
ming System for the specification and verification of object-oriented programs.

Thursday, July 9th (16:00-17:30, Palazzo Ducale, Sala «Camino»)

Object Teams: Programming with Contextual Roles
Stephan Herrmann (Technische Universität Berlin, Germany)

Abstract. From the early days of object orientation it is well-known that inheri-
tance between classes and delegation between objects provide similar capabilities.
While each approach has its specific strengths and limitations, only few program-
ming languages support a combination of both. The concept of roles provides an
excellent intuition for objects that are instances of a class and also delegate to a base
or parent object. Early attempts of integrating the role concept into an object oriented
language add accidental complexity to programs because one important property of
roles had been neglected: roles depend on context. More recent languages thus reify
the context in which roles live as "teams" (ObjectTeams/Java (OT/J)) or "institutions"
(powerJava) etc. Of these languages OT/J is an excellent representative due to the
maturity of the language and its tools. Steimann has identified 15 criteria from what
various authors had considered relevant for the role concept. OT/J supports all 15
criteria. OT/J has been thoroughly integrated with Java, accounting for all relevant
features of Java up-to version 6, as documented in the comprehensive language def-
inition. Furthermore, team inheritance treats roles as virtual classes and fully imple-
ments the concept of family polymorphism, with additional options towards more

14

strictness (in terms of object confinement) and towards more flexibility (in terms of
migration between teams). For typesafe substitution of roles and bases, OT/J intro-
duces translation polymorphism, realized by the implicit translations "lifting" and
"lowering". With smart lifting a powerful mechanism is provided for mapping an in-
heritance hierarchy of base classes to a similar, but potentially different, hierarchy of
role classes. Finally, several mechanisms for activating and deactivating a team sup-
port the notion that roles can be interpreted as a specific form of disciplined aspects,
where aspect bindings utilize and extend the power of Java generics to overcome
typing issues that have been identified in AspectJ. Summarizing, OT/J is a modern
extension of the object oriented paradigm, borrowing from several approved con-
cepts, combining all into a mature language. This language is supported by an in-
dustrial strength development environment based on and deeply integrated with the
Eclipse JDT.

Stephan Herrmann received his Ph.D. at Technische Universität Berlin in 2002 for his
work on applying new techniques for separation of concerns to the development of
a multi-view software engineering environment. Since then his focus is on develop-
ing the language ObjectTeams/Java (OT/J) and the full-featured Eclipse-based Ob-
ject Teams Development Tooling. Much of his practical experience with OT/J stems
from the fact that the OTDT itself is written in OT/J. He has a long track-record of
teaching OT/J in classroom, conference and workshop presentations as well as var-
ious demos and tutorials on OT/J and its tools. Conference presentations include
OOPSLA, AOSD and also EclipseCon and JAX. Stephan Herrmann is a member of
AITO. His current focus is on spreading the word about Object Teams and on resolv-
ing potential barriers for adoption, should they occur.

15

Technical Papers at Palazzo Ducale

Wednesday, July 8th (Sala del «Minor Consiglio»)

9:00-9:30 Welcome

9:30-10:30 Invited Talk Richard Jones (University of Kent, UK)

Classes, Jim, but not as we know them; Type Classes in Haskell: what, why, and
whither
Simon Peyton Jones (Microsoft Research, UK)

Haskell is now quite widely used, but its most important contributions are the ideas
that it embodies. In this talk I will focus on one of these ideas, namely type classes,
with a few anecdotes and reflections along the way about the process of developing
the language.

Type classes are probably Haskell’s most distinctive feature. The original idea
is very neat and, better still, it led to a long series of subsequent generalisations and
innovations. Indeed, although the language is now nineteen years old, Haskell’s
type system is still in a state of furious development. For example, I am involved in
adding type-level functions to Haskell, as I will briefly describe.

I will explain what type classes are, how they differ from the classes of main-
stream object oriented languages, why I think they are so cool, and what the hot
topics are. I’ll give plenty of examples, so you don’t need to already know Haskell.

11:00-12:30 Types, Frameworks and Modelling
Viktor Kuncak (École Polytechnique Fédérale de Lausanne, Switzerland)

Coinductive Type Systems for Object-Oriented Languages
Davide Ancona and Giovanni Lagorio (Università di Genova)

We propose a novel approach based on coinductive logic to specify type systems
of programming languages. The approach consists in encoding programs in Horn
formulas which are interpreted w.r.t. their coinductive Herbrand model.

We illustrate the approach by first specifying a standard type system for a small
object-oriented language similar to Featherweight Java. Then we define an idealized
type system for a variant of the language where type annotations can be omitted.
The type system involves infinite terms and proof trees not representable in a finite
way, thus providing a theoretical limit to type inference of object-oriented programs,
since only sound approximations of the system can be implemented.

Approximation is naturally captured by the notions of subtyping and subsump-
tion; indeed, rather than increasing the expressive power of the system, as it usually
happens, here subtyping is needed for approximating infinite non regular types and
proof trees with regular ones.

16

Checking Framework Interactions with Relationships
Ciera Jaspan and Jonathan Aldrich (Carnegie Mellon University, USA)

Software frameworks impose constraints on how plugins may interact with them.
Many of these constraints involve multiple objects, are temporal, and depend on
runtime values. Additionally, they are difficult to specify because they are often ex-
trinsic and may break behavioral subtyping. This work introduces relationships as
an abstraction for specifying framework constraints in FUSION (Framework Usage
SpecificatIONs), and it presents a formal description and implementation of a static
analysis to find constraint violations in plugin code. We define three variants of this
analysis: one is sound, one is complete, and a pragmatic variant that balances these
tradeoffs. We prove soundness and completeness for the appropriate variants, and
we show that the pragmatic variant can effectively check constraints from real-world
programs.

COPE - Automating Coupled Evolution of Metamodels and Models
Markus Herrmannsdoerfer (Technische Universität München, Germany),
Sebastian Benz (BMW Car IT GmbH, Germany), and
Elmar Juergens (Technische Universität München, Germany)

Model-based development promises to increase productivity by offering modeling
languages tailored to a specific domain. Such modeling languages are typically
defined by a metamodel. In response to changing requirements and technological
progress, the domains and thus the metamodels are subject to change. Manually
migrating existing models to a new version of their metamodel is tedious and error-
prone. Hence, adequate tool support is required to support the maintenance of mod-
eling languages. This paper introduces COPE, an integrated approach to specify
the coupled evolution of metamodels and models to reduce migration effort. With
COPE, a language is evolved by incrementally composing modular coupled transfor-
mations that adapt the metamodel and specify the corresponding model migrations.
This modular approach allows to combine the reuse of recurring transformations
with the expressiveness to cater for complex transformations. We demonstrate the
applicability of COPE in practice by modeling the coupled evolution of two existing
modeling languages.

14:00-15.30 Aliasing and Transactions Jan Vitek (Purdue University, USA)

Making Sense of Large Heaps
Nick Mitchell, Edith Schonberg, and Gary Sevitsky (IBM T.J. Watson Research Center, USA)

It is common for large-scale Java applications to suffer memory problems, whether
inefficient designs that impede scalability, or lifetime bugs such as leaks. Making
sense of heaps with many millions of objects is difficult given the extensive layering,
framework reuse, and shared ownership in current applications. We present Yeti, a
tool that summarizes memory usage to uncover the costs of design decisions, rather

17

than of lower-level artifacts as in traditional tools, making it possible to quickly iden-
tify and remediate problems. Yeti employs three progressive abstractions and corre-
sponding visualizations: it identifies costly groups of objects that collectively per-
form a function, recovers a logical data model for each, and summarizes the imple-
mentation of each model entity and relationship. Yeti is used by development and
service teams within IBM, and has been effective in solving numerous problems.
Through case studies we demonstrate how these abstractions help solve common
categories of problems.

Scaling CFL-Reachability-Based Points-to Analysis Using Context-Sensitive Must-
Not-Alias Analysis
Guoqing Xu, Atanas Rountev (Ohio State University, USA), and
Manu Sridharan (IBM T.J. Watson Research Center, USA)

Pointer analyses derived from a Context-Free-Language (CFL) reachability formula-
tion achieve very high precision, but they do not scale well to compute the points-to
solution for an entire large program. Our goal is to increase significantly the scala-
bility of the currently most precise points-to analysis for Java. This CFL-reachability
analysis depends on determining whether two program variables may be aliases.
We propose an efficient but less precise pre-analysis that computes context-sensitive
must-not-alias information for all pairs of variables. Later, these results can be used
to quickly filter out infeasible CFL-paths during the more precise points-to analysis.
Several novel techniques are employed to achieve precision and efficiency, includ-
ing a new approximate CFL-reachability formulation of alias analysis, as well as a
carefully-chosen trade-off in context sensitivity. The approach effectively reduces
the search space of the points-to analysis: the modified points-to analysis is more
than three times faster than the original analysis.

NePaLTM: Design and Implementation of Nested Parallelism for Transactional
Memory Systems
Haris Volos (University of Wisconsin-Madison, USA), Adam Welc, Ali-Reza Adl-Tabatabai,
Tatiana Shpeisman, Xinmin Tian, and Ravi Narayanaswamy (Intel Corporation, USA)

Transactional memory (TM) promises to simplify construction of parallel applica-
tions by allowing programmers to reason about interactions between concurrently
executing code fragments in terms of high-level properties they should possess. How-
ever, all currently existing TM systems deliver on this promise only partially by dis-
allowing parallel execution of computations performed inside transactions. This pa-
per fills in that gap by introducing NePaLTM (Nested ParalleLism for Transactional
Memory), the first TM system supporting nested parallelism inside transactions. We
describe a programming model where TM constructs (atomic blocks) are integrated
with OpenMP constructs enabling nested parallelism. We also discuss the design
and implementation of a working prototype where atomic blocks can be used for
concurrency control at an arbitrary level of nested parallelism. Finally, we present a

18

performance evaluation of our system by comparing transactions-based concurrency
control mechanism for nested parallel computations with a mechanism already pro-
vided by OpenMP based on mutual exclusion.

16:00-17:30 Access Control and Verification Atsushi Igarashi (Kyoto University)

Implicit Dynamic Frames: Combining Dynamic Frames and Separation Logic
Jan Smans, Bart Jacobs, and Frank Piessens (Katholieke Universiteit Leuven, Belgium)

The dynamic frames approach has proven to be a powerful formalism for specifying
and verifying object-oriented programs. However, it requires writing and checking
many frame annotations. In this paper, we propose a variant of the dynamic frames
approach that eliminates the need to explicitly write and check frame annotations.
Reminiscent of separation logic’s frame rule, programmers write access assertions
inside pre- and postconditions instead of writing frame annotations. From the pre-
condition, one can then infer an upper bound on the set of locations writable or
readable by the corresponding method. We implemented our approach in a tool,
and used it to automatically verify several challenging programs, including subject-
observer, iterator and linked list.

Fine-Grained Access Control with Object-Sensitive Roles
Jeffrey Fischer, Daniel Marino, Rupak Majumdar, and Todd Millstein (University of Califor-
nia, Los Angeles, USA)

Role-based access control (RBAC) is a common paradigm to ensure that users have
sufficient rights to perform various system operations. In many cases, traditional
RBAC cannot easily express application-level security requirements. For instance, in
a medical records system it is difficult to express that doctors should only update
records for their own patients. Further, traditional RBAC frameworks like Java’s En-
terprise Edition rely solely on dynamic checks, making application code fragile and
difficult to ensure correct. We introduce Object-sensitive RBAC (ORBAC), a general-
ized RBAC model for object-oriented languages. ORBAC resolves the expressiveness
limitations of RBAC by allowing roles to be parameterized by properties of the busi-
ness objects being manipulated. We formalize and prove sound a dependent type
system that statically validates a program’s conformance to an ORBAC policy. We
have implemented our type system for Java and have used it to validate fine-grained
access control in the OpenMRS medical records system.

Practical API Protocol Checking with Access Permissions
Kevin Bierhoff, Nels E. Beckman, and Jonathan Aldrich (Carnegie Mellon University, USA)

Reusable APIs often define usage protocols. We previously developed a sound mod-
ular type system that checks compliance with typestate-based protocols while af-
fording a great deal of aliasing flexibility. We also developed Plural, a prototype tool

19

that embodies our approach as an automated static analysis and includes several ex-
tensions we found useful in practice. This paper evaluates our approach along the
following dimensions: (1) We report on experience in specifying relevant usage rules
for a large Java standard API with our approach. We also specify several other Java
APIs and identify recurring patterns. (2) We summarize two case studies in verify-
ing third-party open-source code bases with few false positives using our tool. We
discuss how tool shortcomings can be addressed either with code refactorings or ex-
tensions to the tool itself. These results indicate that our approach can be used to
specify and enforce real API protocols in practice.

Thursday, July 9th (Sala del «Minor Consiglio»)

9:00-9:30 Awarding of Dahl-Nygaard Prize

9:30-10:30 Dahl-Nygaard Prize Talk Eric Jul (University of Copenhagen, Denmark)

Self and Self: Whys and Wherefores
David Ungar (IBM Research, USA)

Generational garbage collection, prototype-based languages, dynamic optimization,
cartoon animation for legibility, all tremendous fun, none done alone. What were
they? How did they happen? Why did they matter? Looking back, what is worth
learning about these experiences beyond the technical innovations? Combining hind-
sight with others’ wisdom, it is possible to abstract some thoughts that may be useful
in other situations: when (not) to listen to wise council; whom to follow into the cafe-
teria at lunch time; the benefit of striking a balance between one’s own vision and
those of ones collaborators; which chance events might alter one’s course; and how
one’s best work can sometimes arise from things that, on the surface, have nothing
to do with work at all. At a deeper level still, the notion that values, principles, and
practices arise in that particular order serves to unify the work and the experiences,
and perhaps points the way forward as we all strive to invent the future.

11:00-12:30 Modularity Erik Ernst (University of Aarhus, Denmark)

Adding State and Visibility Control to Traits Using Lexical Nesting
Tom Van Cutsem (VUB, Belgium), Alexandre Bergel (INRIA Lille, France),
Stéphane Ducasse (INRIA Lille, France), and Wolfgang De Meuter (VUB, Belgium)

Traits are reusable building blocks that can be composed to share methods across
unrelated class hierarchies. Original traits are stateless and cannot express visibil-
ity control for methods. Two extensions, stateful traits and freezable traits, have
been proposed to overcome these limitations. However, these extensions introduce
complexity and have not yet been combined to simultaneously add both state and
visibility control to traits.

20

This paper revisits the addition of state and visibility control to traits. Rather
than extending the original traits model with additional operations, we allow traits
to be lexically nested within other modules. Traits can then have (shared) state and
visibility control by hiding variables or methods in their lexical scope. Although the
Traits’ "flattening property" must be revisited, the combination of traits with lexical
nesting results in a simple and expressive trait model. We discuss an implementation
of the model in AmbientTalk and specify its operational semantics.

Featherweight Jigsaw — A Minimal Core Calculus for Modular Composition of
Classes
Giovanni Lagorio, Marco Servetto, and Elena Zucca (Università di Genova, Italy)

We present FJig, a simple calculus where basic building blocks are classes in the
style of Featherweight Java. However, inheritance has been generalized to the more
flexible notion proposed in Bracha’s Jigsaw framework.

We keep the nominal type approach of Java-like languages, however, a class is
not necessarily a structural subtype of any class used in its defining expression.

The calculus allows the encoding of a large variety of different mechanisms for
software composition, including standard inheritance, mixin classes, traits and hid-
ing. Hence, FJig can be used as a unifying framework for analyzing existing mecha-
nisms and proposing extensions.

Two different semantics are provided: flattening and direct. The difference is
analogous to that between two intuitive models to understand inheritance: where
inherited methods are copied into heir classes, and where member lookup ascends
the inheritance chain. We address equivalence of these two views for a more sophis-
ticated composition mechanism.

Modular Visitor Components: A Practical Solution to the Expression Families
Problem
Bruno Oliveira (Oxford University Computing Laboratory, United Kingdom)

The expression families problem can be defined as the problem of achieving reusabil-
ity and composability across the components involved in a family of related datatypes
and corresponding operations over those datatypes. Like the traditional expression
problem, adding new components (either variants or operations) should be possible
while preserving modular and static type-safety. Moreover, different combinations
of components should have different type identities and the subtyping relationships
between components should be preserved. By generalizing previous work explor-
ing the connection between type-theoretic encodings of datatypes and visitors, we
propose two solutions for this problem in Scala using modular visitor components.
These components can be grouped into features that can be easily composed in a
feature-oriented programming style to obtain customized datatypes and operations.

21

14:00-15:30 Mining and Extracting Yossi Gil (Google Haifa and Technion, Israel)

Debugging Method Names
Einar W. Høst (Norsk Regnesentral, Norway) and
Bjarte M. Østvold (Norsk Regnesentral, Norway)

Meaningful method names are crucial for the readability and maintainability of soft-
ware. Existing naming conventions focus on syntactic details, leaving programmers
with little or no support in assuring meaningful names. In this paper, we show that
naming conventions can go much further: we can mechanically check whether or
not a method name and implementation are likely to be good matches for each other.
The vast amount of software written in Java defines an implicit convention for pair-
ing names and implementations. We exploit this to extract rules for method names,
which are used to identify "naming bugs" in well-known Java applications. We also
present an approach for automatic suggestion of more suitable names in the presence
of mismatch between name and implementation.

MAPO: Mining and Recommending API Usage Patterns
Hao Zhong (Peking University, China), Tao Xie (North Carolina State University, USA),
Lu Zhang (Peking University, China), Jian Pei (Simon Fraser University, Canada), and
Hong Mei (Peking University, China)

API methods provided by software libraries are often complex and not well docu-
mented. To get familiar with how API methods are used, programmers often exploit
a code search tool for related snippets. However, the returned snippets are often
large in number, which place a barrier for programmers to locate useful ones. To
help programmers overcome this barrier, we developed MAPO for mining API us-
age patterns. A mined pattern describes that in a certain usage scenario, some API
methods are frequently invoked together and their usages follow some sequential
rules. Our experimental result shows that with these patterns MAPO can help pro-
grammers locate useful code snippets more effectively than two state-of-the-art code
search tools. To investigate whether MAPO can assist programmers in programming
tasks, we further conducted an empirical study. The result shows that using MAPO,
programmers can produce code with fewer bugs when an API usage is relatively
complex.

Supporting Framework Use via Automatically Extracted Concept-Implementation
Templates
Abbas Heydarnoori, Krzysztof Czarnecki, and Thiago Tonelli Bartolomei (University of Wa-
terloo, Canada)

Application frameworks provide reusable concepts that are instantiated in applica-
tion code through potentially complex implementation steps such as subclassing,
implementing callbacks, and making calls. Existing applications contain valuable
examples of such steps, except that locating them in the application code is often

22

challenging. We propose the notion of concept implementation templates, which
summarize the necessary implementation steps, and an approach to automatic ex-
traction of such templates from traces of sample applications. We demonstrate the
feasibility of the template extraction with high precision and recall through an em-
pirical study with twelve realistic concepts from four widely-used frameworks. Fi-
nally, we report on a user experiment with twelve subjects in which the choice of
templates vs. documentation had much less impact on development time than the
concept complexity.

16:00-17:30 Refactoring Oscar Nierstrasz (University of Bern, Switzerland)

Stepping Stones over the Refactoring Rubicon
Max Schaefer, Mathieu Verbaere, Torbjorn Ekman, and Oege de Moor (Oxford University,
UK)

Refactoring tools allow the programmer to pretend they are working with a richer
language where the behaviour of a program is automatically preserved during re-
structuring. In this paper we show that this metaphor of an extended language
yields a very general and useful implementation technique for refactorings: a refac-
toring is implemented by embedding the source program into an extended language
on which the refactoring operations are easier to perform,and then translating the
refactored program back into the original language. Using the well-known Extract
Method refactoring as an example, we show that this approach allows a very fine-
grained decomposition of the overall refactoring into a series of micro-refactorings
that can be understood, implemented, and tested independently. We thus can easily
write implementations of complex refactorings that rival and even outperform in-
dustrial strength refactoring tools in terms of correctness, but are much shorter and
easier to understand.

Program Metamorphosis
Christoph Reichenbach, Devin Coughlin, and Amer Diwan (University of Colorado, USA)

Modern development environments support refactoring by providing atomically be-
haviour-preserving transformations. While useful, these transformations are limited
in three ways: (i) atomicity forces transformations to be complex and opaque, (ii) the
behaviour preservation requirement disallows deliberate behaviour evolution, and
(iii) atomicity limits code reuse opportunities for refactoring implementers.

We present ‘program metamorphosis’, a novel approach for program evolution
and refactoring that addresses the above limitations by breaking refactorings into
smaller steps that need not preserve behaviour individually. Instead, we ensure that
sequences of transformations preserve behaviour together, and simultaneously per-
mit selective behavioural change.

To evaluate program metamorphosis, we have implemented a prototype plugin
for Eclipse. Our analysis and experiments show that (1) our plugin provides correct-
ness guarantees on par with those of Eclipse’s own refactorings, (2) both our plugin

23

and our approach address the aforementioned limitations, and (3) our approach fully
subsumes traditional refactoring.

From Public to Private to Absent: Refactoring Java Programs under Constrained
Accessibility
Friedrich Steimann and Andreas Thies (Fernuniversität in Hagen, Germany)

Contemporary refactoring tools for Java aiding in the restructuring of programs have
problems with respecting access modifiers such as public and private: while some
tools provide hints that referenced elements may become inaccessible due to the
intended restructuring, none we have tested prevent changes that alter the mean-
ing of a program, and none take steps that counteract such alterations. To address
these problems, we formalize accessibility in Java as a set of constraint rules, and
show how the constraints obtained from applying these rules to a program and an
intended refactoring allow us to check the preconditions of the refactoring, as well
as to compute the changes of access modifiers necessary to preserve the behaviour of
the refactored program. We have implemented our framework as a proof of concept
in Eclipse, and demonstrated how it improves applicability and success of an impor-
tant refactoring in a number of sample programs. That our approach is not limited
to Java is shown by comparison with the constraint rules for C# and Eiffel.

Friday, July 10th (Sala del «Minor Consiglio»)

9:30-10:00 Invited Talk Doug Lea (State University of New York at Oswego, USA)

Java on 1000 Cores: Tales of Hardware/Software Co-design
Cliff Click (Azul Systems, USA)

Azul Systems designs and builds systems for running business logic applications
written in Java. Unlike scientific computing, business logic code tends to be very
large and complex (> 1MLOC is *common*), display very irregular data access pat-
terns, and make heavy use of threads and locks. The common unit of parallelism
is the transaction or thread-level task. Business logic programs tend to have high
allocation rates which scale up with the amount of work accomplished, and they are
sensitive to Garbage Collection max-pause-times. Typical JVM implementations for
heaps greater than 4 Gigabytes have unacceptable pause times and this forces many
applications to run clustered.

Our systems support heaps up to 600 Gigabytes and allocation rates up to 35
Gig/s with pause times in the dozen-millisecond range. We have large core counts
(up to 864) for running parallel tasks; our memory is Uniform Memory Access (as
opposed to the more common NUMA), cache-coherent, and has supercomputer-
level bandwidth. The cores are our own design; simple 3-address RISCs with read-
and write-barriers to support GC, hardware transactional memory, zero-cost high-
rez profiling, and some more modest Java-specific tweaks.

24

This talk is about the business environment which drove the design of the hard-
ware (e.g. why put in HTM support? why our own CPU design and not e.g. MIPS
or X86?), some early company history with designing our own chips (1st silicon back
from the fab had problems like the bits in the odd-numbered registers bleeding into
the even-numbered registers), and finally some wisdom and observations from a
tightly integrated hardware/software co-design effort.

10.30-12:30 Concurrency, Exceptions and Initialization
Kathryn Gray (University of Cambridge, UK)

Loci: Simple Thread-Locality for Java
Tobias Wrigstad, Filip Pizlo, Fadi Meawad, Lei Zhao, and Jan Vitek (Purdue University,
USA)

This paper presents a simple type system for thread-local data in Java. Classes and
types are annotated to express thread-locality and unintended leaks are detected at
compile-time. The system, called Loci, is minimal, modular and compatible with
legacy code. The only change to the language is the addition of two new metadata
annotations. We implemented Loci as an Eclipse plug-in and used it to evaluate our
design on a number of benchmarks. We found that Loci is compatible with how Java
programs are written and that the annotation overhead is light thanks to a judicious
choice of defaults.

Failboxes: Provably Safe Exception Handling
Bart Jacobs and Frank Piessens (Katholieke Universiteit Leuven, Belgium)

The primary goal of exception mechanisms is to help ensure dependency safety: that
when an operation fails, code that depends on the operation’s successful completion
is not executed. The exception mechanisms of current mainstream programming lan-
guages make it hard to achieve this, particularly when objects manipulated inside a
try block outlive the try block.

We propose a language mechanism called failboxes. Programmers may create
failboxes dynamically and execute blocks of code in them. Once any such block fails,
all subsequent attempts to execute code in the failbox will fail. To achieve depen-
dency safety, programmers simply need to ensure that if one operation depends on
another operation, then both are executed in the same failbox. Furthermore, failboxes
help fix the unsafe interaction between locks and exceptions; they enable safe can-
cellation and robust resource cleanup; and they help prevent liveness issues when a
thread is waiting on a failed thread.

25

Are We Ready for a Safer Construction Environment?
Yossi Gil (Google, Haifa, Israel) and
Tali Shragai (The Technion, Israel)

If a constructor of a base class invokes a method overridden in the derived, then
(in many languages) this overridden method is invoked on a “half baked” object,
without any language aid to warn the method against this.

This situation may lead to confusing semantics, complicated coupling between
the base and the derived, and difficulty in introducing features such as nonnull and
readonly specification into the language.

This work is an empirical investigation of calling dynamically bound methods
in the current programming practice in Java.

In a data set comprising over 60K classes, we found that although the potential
for such a situation is non-negligible, this potential is realized scarcely, occurring in
1.5% of all constructors, inheriting from 0.5% of all constructors.

We found that over 80% of these incidents fall into eight “patterns”, which can
be relatively easily transformed into equivalent safer code.

Type-based Object Immutability with Flexible Initialization
Christian Haack and Erik Poll (Radboud University Nijmegen, The Netherlands)

We present a type system for checking object immutability, read-only references, and
class immutability in an open or closed world. To allow object initialization outside
object constructors (which is often needed in practice), immutable objects are ini-
tialized in lexically scoped regions. The system is simple and direct; its only type
qualifiers specify immutability properties. No auxiliary annotations, e.g., owner-
ship types, are needed, yet good support for deep immutability is provided. To ex-
press object confinement, as required for class immutability in an open world, we
use qualifier polymorphism. The system has two versions: one with explicit speci-
fication commands that delimit the object initialization phase, and one where such
commands are implicit and inferred. In the latter version, all annotations are com-
patible with Java’s extended annotation syntax, as proposed in JSR 308.

14:00-15.30 Concurrency and Distribution
Gary Leavens (University of Central Florida, USA)

Security Monitor Inlining for Multithreaded Java
Mads Dam (KTH, Sweden), Bart Jacobs (K.U.Leuven, Belgium),
Andreas Lundblad (KTH, Sweden), and Frank Piessens (K.U.Leuven, Belgium)

Program monitoring is a well-established and efficient approach to security policy
enforcement. An implementation of program monitoring that is particularly appeal-
ing for application-level policy enforcement is monitor inlining: the application is
rewritten to push monitoring and policy enforcement code into the application itself.
The intention is that the inserted code enforces compliance with the policy (security),

26

and otherwise interferes with the application as little as possible (conservativity and
transparency).

For sequential Java-like languages, provably correct inlining algorithms have
been proposed, but for the multithreaded setting, this is still an open problem. We
show that no inliner for multithreaded Java can be both secure and transparent. It is
however possible to identify a broad class of policies for which all three correctness
criteria can be obtained. We propose an inliner that is correct for such policies, im-
plement it for Java, and show that it is practical by reporting on some benchmarks.

EventJava: An Extension of Java for Event Correlation
Patrick Eugster and K. R. Jayaram (Purdue University, USA)

Event correlation has become the cornerstone of many reactive applications, partic-
ularly in distributed systems. However, support for programming with complex
events is still rather specific and rudimentary. This paper presents EventJava, an
extension of Java with generic support for event-based distributed programming.
EventJava seamlessly integrates events with methods, and broadcasting with uni-
casting of events; it supports reactions to combinations of events, and predicates
guarding those reactions. EventJava is implemented as a framework to allow for
customization of event semantics, matching, and dispatching. We present its im-
plementation, based on a compiler transforming specific primitives to Java, along
with a reference implementation of the framework. We discuss ordering properties
of EventJava through a formalization of its core as an extension of Featherweight
Java. In a performance evaluation, we show that EventJava compares favorably to
a highly tuned database-backed event correlation engine as well as to a comparably
lightweight concurrency mechanism.

Remote Batch Invocation for Compositional Object Services
Ali Ibrahim (University of Texas at Austin, USA), Yang Jiao (Virginia Tech, USA),
Eli Tilevich (Virginia Tech, USA), and William R. Cook (University of Texas at Austin, USA)

Because Remote Procedure Calls do not compose efficiently, designers of distributed
object systems use Data Transfer and Remote Facade patterns to create large-gran-
ularity interfaces, hard-coded for particular client use cases. As an alternative to
RPC-based distributed objects, this paper presents Remote Batch Invocation (RBI),
language support for explicit client-defined batches. A Remote Batch statement com-
bines remote and local execution: all the remote code is executed in a single round-
trip to the server, where all data sent to the server and results from the batch are
communicated in bulk. RBI supports remote blocks, iteration and conditionals, and
local handling of remote exceptions. RBI is efficient even for fine-grained interfaces,
eliminating the need for hand-optimized server interfaces. We demonstrate RBI with
an extension to Java, using RMI internally as the transport layer. RBI supports large-
granularity, stateless server interactions, characteristic of service-oriented comput-
ing.

27

Posters & Demos Session at Palazzo Ducale

ECOOP 2009 will hold combined poster and demonstration sessions. The poster
& demo Session is an opportunity for presenting late-breaking results, ongoing re-
search projects, and speculative or innovative work in progress, in an informal and
interactive setting. Posters and demos are intended to provide authors and partici-
pants with the ability to connect with each other and to engage in discussions about
the work. We will be pleased to have you attend our two posters & demos sessions
at Loggiato Minore on Wednesday 8th and Thursday 9th 17:30-18:30.

Wednesday 8th and Thursday 9th (17:30-18:30, Loggiato Minore)

Implementing Aggregation in Java
George B. Wilson and Azadeh Ebrahimi (Anglia Ruskin University, UK)

The Unified Modeling Language (UML) is a standard design tool for object oriented
environments. However, despite of the richness of UML to model critical systems,
the whole-part relationship (aggregation) is not unambiguously supported by the
lower level programming syntax available in many object-oriented languages. This
work does not attempt to elaborate or redefine the ambiguity of aggregation but
rather suggests a simple strategy that might be adopted by the programmer to im-
plement this relationship specifically (but not exclusively) in the Java programming
language.

Typestate Checking in Concurrent Programs with Synchronized Blocks
Nels E. Beckman and Jonathan Aldrich (Carnegie Mellon University, USA)

In previous work we described a modular static analysis based on access permis-
sion annotations, which describe the ways in which a reference can be aliased, for
preventing the improper use of object protocols in concurrent programs. That sys-
tem was based on atomic blocks, a mutual exclusion primitive not yet in wide use.
Now we extend that system to programs written using synchronized blocks, which
are in wide use today. This system can verify concurrent programs without any
concurrency-specific annotations.

Javeleon - Extending NetBeans with Dynamic Update of Active Modules
Allan Gregersen (University of Southern Denmark, Denmark)

This demo looks at full dynamic module updates on the NetBeansTMplatform, show-
ing how extensive changes to the code of running application modules can be made
on the fly. A demonstration of changes to the class inheritance hierarchies of active
classes reveals a so-far-unseen power in the field of dynamic update at the appli-
cation level. In addition, standard development practices are unaffected and pro-
grammers do not have to provide additional information to the underlying update

28

mechanism, which leaves the update almost completely transparent, although still
very flexible.

COPE - Automating Coupled Evolution of Metamodels and Models
Markus Herrmannsdoerfer (Technische Universität Munchen)

Have you ever evolved your metamodel and your models were no longer valid af-
terwards? Or have you avoided to evolve your metamodel in order not to invalidate
your models? Or have you even deteriorated your metamodel so that it remains
downwards compatible to previous versions in order to avoid these problems? This
poster and demo introduces COPE, a tool that eases the migration of models in re-
sponse to an evolving metamodel. COPE explicitly records the history of the meta-
model as a sequence of operations and allows to attach information on how to mi-
grate models. The combination of metamodel adaptation and model migration is
referred to as COuPled Evolution of metamodels and models. The attached infor-
mation can be used to automatically migrate models to the new version of the meta-
model. To further reduce migration effort, COPE allows to reuse combinations of
metamodel adaptation and model migration steps across metamodels. COPE is im-
plemented based on the Eclipse Modeling Framework (EMF) which is probably the
most widely used metamodeling framework. In order not to disturb EMF users in
their habits, COPE seamlessly integrates into the existing metamodel editor.

A Demo of Azul Systems’ JVM Profiling Tool
Cliff Click (Azul Systems, USA)

Every JVM running on Azul Systems’ gear comes with RTPM — a Real-Time Perfor-
mance Monitor. RTPM is a zero-overhead always-on profiler, and is accessed through
any browser. RTPM shows the inner state of the JVM in great detail through the stan-
dard browser interface. RTPM shows e.g., hot code, hot locks, live running thread
stacks, the current heap state, live object counts, I/O rates, GC pauses & allocate
rates. For hot code, RTPM samples every thread 1000 times/sec (with no overhead
because of hardware support), displays the hot JIT’d code with sample counts, pro-
filing data, compiler & inlining decisions. For hot locks, RTPM collects stack traces
of blocking threads and can display the hot-paths leading to contended locks. For
live thread stacks, RTPM can show full stack traces of all threads, down to the byte-
code level (generally with Java variables named). The stack-trace is fully live, and
every variable & heap object can be inspected. The heap information includes alloca-
tion counts, live-object counts, and points-to information. RTPM can monitor these
and many more aspects of a JVM. I will demo using RTPM to inspect & diagnose
performance problems in a live webserver.

More information can be found on Azul Systems’ Engineer-2-Engineer web-
pages: http://www.azulsystems.com/e2e.

29

http://www.azulsystems.com/e2e

General Information

Exhibition
Throughout the conference, the ECOOP 2009 sponsors and exhibitors will have ex-
hibition stands in the Loggiato Maggiore.

Birds-of-a-Feather Sessions
A Birds-of-a-Feather Session on Software engineering at Google has been organized by
Peter Dickman and Yossi Gil, on Thursday July 9th 17:30-18:15 (Sala «Minor Con-
siglio»).

Further Birds-of-a-Feather sessions can be arranged on request, and will be ad-
vertised on the information board near the conference desk (Loggiato Maggiore).

Wireless Access
WLAN access will be available, both at Hotel Bristol and at Palazzo Ducale, Piano
Nobile. Instruction on its use will be given during registration.

Information Board
Near the conference desk there will be a message and information board where you
can leave messages and where the conference staff will post messages for participants
and current information.

Luggage Facilities
Luggage can be stored in the wardrobe room at the left of Sala del Minor Consiglio
entrance. Our staff will look after your possessions but we are unable to accept any
responsibility for loss or damage.

Smoking Policy
A smoking ban applies in all conference buildings.

Parking Facilities
Parking near the conference sites is possible only at payment parking places in Piazza
Piccapietra and Piazza Dante.

Catering Arrangements

Coffee Breaks
Coffee breaks will be daily at 10:30-11:00 and at 15.30-16.00.
On Monday and Tuesday, coffee breaks will be at Hotel Bristol, Sala Paganini A, 2nd

Floor.
On Wednesday, Thursday, and Friday, coffee breaks will be served in the “Loggiato
Maggiore”, Piano Nobile (3rd Floor), Palazzo Ducale.

Lunches
Lunch will be served daily 12:30-14:00 at “Le Terrazze del Ducale”, on the terrace of
Palazzo Ducale.

30

Evening Social Events

Monday, July 6th, 19:00-22:00 – Workshop Reception
The Workshop Reception will be held at “Le Terrazze del Ducale”, on the terrace of
Palazzo Ducale, offering a spectacular aerial view of Genova’s old center. Snacks and
drinks will be served.

Wednesday, July 8th, 19:00-22:00 – Welcome Party
At Aula Magna of the University Rectorate in via Balbi, where some University
buildings are part of the Rolli system, a set of mid 17th century palaces which are
included in the UNESCO World Heritage list. Snacks and drinks will be served.

The University Rectorate can be reached from the conference site by foot (10-minutes
walk). It is a very nice walk through the main streets of Genova. Alternatively, you
may take buses number 20, 30, or 35 in Piazza de Ferrari (Carlo Felice side) and get
off at the Via Balbi-Università bus stop.

Address: via Balbi, 5 – 16126 Genova
Meeting Point: Palazzo Ducale entrance on Piazza de Ferrari, 18:45

Thursday, July 9th, 19:30-23:30 – Conference Banquet
At Villa Lo Zerbino, a 16th century mansion surrounded by a wonderful park de-
signed by the architect of Versailles in Paris. A guided visit of the Villa and its
prestigious painting collection is included. Appetizers and sweets buffets will be in
the park (weather permitting) while dinner will be served in the wonderful painted
rooms on the first floor.

We are pleased to have a banquet speech by William Cook, entitled Objectives & Ob-
jections.

Villa Lo Zerbino can be reached from the conference site by foot (20-minutes walk).
Alternatively, you may take bus number 36 in Piazza de Ferrari (Carlo Felice side)
and get off at the Piazza Manin bus stop.

Address: Passo dello Zerbino, 1 – 16122 Genova
Meeting Point: Palazzo Ducale entrance on Piazza de Ferrari, 19:00

31

Conference Site Information
Hotel Bristol — Workshops, July, 6th-7th

First Floor

Second Floor

Third Floor: Mazzini Room

32

Palazzo Ducale — Main Conference, July, 8th-10th

Third Floor — Piano Nobile

B Loggiato Maggiore

A Sala Camino

33

Genova
Genova, the capital of Liguria, stretches along the bay of the same name from Voltri
to the west as far as Nervi to the east, while the hinterland area takes in the lower
parts of the Polcevera and Bisagno Valleys.

The original nucleus of the city, which already existed in pre-Roman times, de-
veloped around the Mandraccio wharf area and on Castello Hill, which overlooks
it.

In the ninth century, the Genoese built the first town walls and laid the foun-
dations for the development of shipping and sea-trading, which would eventually
make the Republic of Genova a Mediterranean sea power and create a dominion
stretching across the entire region of Liguria. From the nineteenth century onwards,
the great city port was flanked by large industrial areas. The old town district is one
of the largest in Europe, and hosts some remarkable artistic and architectural trea-
sures, including the Palazzi dei Rolli, fifty or so homes of the aristocracy entered on
the UNESCO World Heritage List.

In addition to offering a wealth of cultural attractions, Genova is a fascinating
destination for tourists, with its scenic vantage points, sea promenades, aristocratic
villas and of course the Riviera to the east and west, both easy to reach: Porto Venere
and Le Cinque Terre (also UNESCO World Heritage Sites), Tigullio, Portofino and
Camogli to the east and Alassio, Sanremo, Bordighera to the west.

Liguria
Liguria is a narrow strip of land, enclosed between the sea and the Alps and the
Apennines mountains, it is a winding arched extension from Ventimiglia to La Spezia
and is one of the smallest regions in Italy.

It is limited in size, but not in the variety of its vegetation and wildlife which is
amongst the most diversified and interesting in Italy. The coast-line, which is geo-
graphically divided between the Western Riviera and the Eastern Riviera at the sides
of the important center of Genova, from the scenic point of view is characterized by
an alternating series of magnificent high coast-lines and flat, sandy coast-lines, whilst
in the interior the steep hills meet up with the Apennines peaks.

Liguria has an abundance of natural beauty and the various names given to it
such as “Paradise Gulf”, “Siren bay”, “Bay of silence”, “Bay of fairy tales”, “Sea’s
echo” are all a testimony to the magnificent beauty of these marine landscapes.

The host of hotels and seaside facilities ensure that the tourist can enjoy the very
best kind of holiday.

34

As an alternative to a morning spent on the beach there is the possibility of taking
a trip into the hills, that are within easy reach as they sweep right down to the coast.

There are numerous small villages, which often boast ruined castles that bear
testimony to former glories of noble families. They are strewn around the interland,
and provide a peaceful authentic setting away from the crowds, amongst the friendly
hard-working local people.

The ring of hills, lying immediately beyond the coast, together with the beneficial
influx of the sea, account for the mild climate the whole year round (with average
winter temperatures of 7-10�C and summer temperatures of 25-28�C) which makes
for a pleasant stay even in the heart of winter.

35

Executive Committee
Sophia
Drossopoulou

Imperial College, United Kingdom Program Chair

Giovanna Guerrini DISI, Università di Genova, Italy Conference Chairs
Elena Zucca DISI, Università di Genova, Italy
Davide Ancona DISI, Università di Genova, Italy Organizing Chairs
Walter Cazzola DICo, Università di Milano, Italy

Organizing Committee

Ferruccio Damiani Università di Torino, Italy Workshop Chairs
Mario Südholt Ècole des Mines de Nantes, France
Antonio Cisternino Università di Pisa, Italy Summer School
Paola Giannini Univ. del Piemonte Orientale, Italy Committe
James Noble Victoria University of Wellington, NZ
Lorenzo Bettini Universià di Torino, Italy Poster &
Giovanni Lagorio DISI, Università di Genova, Italy Demo Chairs
Giovanni Rimassa Whitestein Technologies, Zürich, CH Exhibition Chairs
Mirko Viroli Università di Bologna, Italy
Dave Clarke K.U. Leuven, Belgium Publicity Chair
Marco Servetto DISI, Università di Genova, Italy Stud. Vol. Chair
Vittoria Gianuzzi DISI, Università di Genova, Italy Sponsor Chair
Antonio Cuni DISI, Università di Genova, Italy Web Master

Student Volunteers

This year, 12 Student Volunteers from across the globe will work side-by-side with
the locals to make this the best ECOOP experience ever. Please feel free to approach
the Student Volunteers at any time during the conference or the social events with
any questions or comments you may have. They will make every effort to help you.
They also know the best places to go and can give you ideas and hints on how to
make the most of the conference and your stay in Genoa.

Nels Beckman Carnegie Mellon University USA
Jia Dai Politecnico di Torino Italy
Sebastian Götz Dresden University of Technology Germany
Mayleen Lacouture École des Mines de Nantes France
Paley Li Victoria University of Wellington New Zealand
Ismael Mejía École des Mines de Nantes France
José Felipe Mejia Bernal Politecnico di Torino Italy
Radu Muschevici Katholieke Universiteit Leuven Belgium
Roberto Perillo Aeronautical Institute of Technology Brazil
Gregor Richards Purdue University USA
Ilya Sergey Katholieke Universiteit Leuven Belgium
Muhammad Uzair INRIA, Sophia Antipolis France

36

Program Committee

Elisa Baniassad The Chinese University of Hong Kong, China
Françoise Baude University of Nice, Sophia Antipolis, France
Bernhard Beckert University of Koblenz, Germany
Lodewijk Bergmans University of Twente, The Netherlands
John Tang Boyland University of Wisconsin-Milwaukee, USA
William Cook University of Texas at Austin, USA
Eric Eide University of Utah, USA
Erik Ernst University of Aarhus, Denmark
Cormac Flanagan University of California at Santa Cruz, USA
Yossi Gil Google Haifa and Technion, Israel
Neal Glew Intel, USA
Kathryn E. Gray University of Cambridge, UK
Görel Hedin Lund University, Sweden
Atsushi Igarashi Kyoto University, Japan
Richard Jones University of Kent, UK
Viktor Kuncak EPFL, Switzerland
Doug Lea State University of New York at Oswego, USA
Gary T. Leavens University of Central Florida, USA
Oscar Nierstrasz University of Bern, Switzerland
James Noble University of Wellington, New Zealand
Nathaniel Nystrom IBM Research, USA
Awais Rashid Lancaster University, UK
Diomidis Spinellis Athens University of Economics and Business, Greece
Peter Sewell University of Cambridge, UK
Laurence Tratt Bournemouth University, UK
Jan Vitek Purdue University, USA
Matthias Zenger Google, Switzerland
Elena Zucca University of Genova, Italy

37

	Program Overview to.44em.
	AITO Dahl-Nygaard Prize to.44em.
	Workshops to.44em.
	Summer School to.44em.
	Technical Papers to.44em.
	Posters & Demos to.44em.
	General Information to.44em.
	Social Events to.44em.
	Conference Site Information to.44em.
	Genova to.44em.
	Organizing Committees to.44em.
	Student Volunteers to.44em.
	Program Committee to.44em.

